Personnel Movement On a Fixed Size Multi-Step G-Grade Manpower System
Main Article Content
Abstract
Downloads
Article Details
Issue
Section
How to Cite
References
Amenaghawon, V. A., Ekhosuehi, V. U. and Osagiede, A. A. (2020a). On the alternative structures for a three-grade markov manpower system. Journal of Mathematics and Applications, 43, 1-13.
Amenaghawon, V. A., Ekhosuehi, V. U. and Osagiede, A. A. (2020b). Markov manpower planning models: a review. International Journal of Operational Research, 39(1), 1-23
Bartholomew, D. J., Forbes, A. F. and McClean, S. I. (1991). Statistical Techniques for Manpower Planning, 2nd edn. John Wiley and Sons, Chichester.
Carette P. and Guerry, M-A. (2023). The Markov Chain Embedding Problem in a Low Jump Frequency Context. https://doi.org/10.48550/arXiv.2305.19887.
Dimitriou, V.A., Georgiou, A.C. and Tsantas, N. (2015). On the equilibrium personnel structure in the presence of vertical and horizontal mobility via multivariate Markov chains, Journal of the Operational Research Society, 66(6), 993-1006.
Ekhosuehi, V. U. and Osagiede, A. A. (2006). Application of Markovian Model to School Enrolment Projection Process. Global Journal of Mathematical Sciences, 5(1), 9 - 16.
Ekhosuehi, V. U., Enagbonma, O. and Osagiede, A. A. (2017). On Stable Growth Index in Graded Structured Manpower System. Journal of Nigeria Statistical Association, 29, 1-13.
Ekhosuehi, V. U. and Omosigho, S. E. (2018). The use of certain staffing requirements as a means of benchmarking academic sta structure. Mathematica Applicanda [Matematyka Stosowana], 46(2), 259 - 272. DOI: 10.14708/ ma.v46i2.5175.
Ekhosuehi, V. U. (2021a). On the stable Gani-type attainability problem controlled by promotion at maximum entropy. Journal of the Operations Research Society of China, 9(3), 673-690. https://doi.org/10.1007/s40305-020-00301-0.
Ekhosuehi, V. U. (2021b). On the use of Cauchy integral formula for the embedding problem of discrete-time Markov chains. Communications in Statistics: Theory and Methods, DOI:10.1080/03610926.2021.1921806.
Ezugwu, V. O. and Ologun, S. (2017). Markov chain: A Predictive Model for Manpower Planning. Journal of Applied Science and Environmental Management, 21(3), 557-565.
Ezugwu, V. O. and Igbinosun, L. I. (2020). Analysis of Manpower System Using Multi Absorbing States Markov Chain. International Journal of Statistics and Applied Mathematics, 5(2), 92 - 99.
Ezugwu, V. O., Osagiede, A. A. and Amenaghawon, V. A. (2024). On the Prediction of non-homogeneous markov fuzzy manpower systems. BIU Journal of Basic and Applied Sciences, 9(1), 53-67.
Guerry, M-A. (2021). Matrix roots and embedding conditions for three-state discretetime Markov chains with complex eigenvalues. Communications in Mathematics and Statistics. https://doi.org/10.1007/s40304-020-00226-3
Komarudin, Guerry, M.-A., Vanden Berghe, G. and De Feyter, T. (2015). Balancing attain ability, desirability and promotion steadiness in manpower planning systems. Journal of the Operational Research Society. DOI: 10.1057/jors.2015.26.
Tsaklidis, G. M. (1996). The evolution of the attainable structures of a continuous time homogeneous Markov system with xed size. Journal of Applied Probability, 33(1), 34-47.
Vassiliou, P.-C.G. (2021). Non-homogeneous Markov set systems. Mathematics, 9, 471. https://doi.org/10.3390/math9050471
Vassiliou, P. C. G. (2022). Limiting Distributions of a Non-Homogeneous Markov System in a Stochastic Environment in Continuous Time. Mathematics. https//doi.org/10.3390/math100812